Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/ Neoproterozoic radiation of eukaryotes
نویسنده
چکیده
—Multicellular filaments from the ca. 1200-Ma Hunting Formation (Somerset Island, arctic Canada) are identified as bangiacean red algae on the basis of diagnostic cell-division patterns. As the oldest taxonomically resolved eukaryote on record Bangiomorpha pubescens n. gen. n. sp. provides a key datum point for constraining protistan phylogeny. Combined with an increasingly resolved record of other Proterozoic eukaryotes, these fossils mark the onset of a major protistan radiation near the Mesoproterozoic/Neoproterozoic boundary. Differential spore/gamete formation shows Bangiomorpha pubescens to have been sexually reproducing, the oldest reported occurrence in the fossil record. Sex was critical for the subsequent success of eukaryotes, not so much for the advantages of genetic recombination, but because it allowed for complex multicellularity. The selective advantages of complex multicellularity are considered sufficient for it to have arisen immediately following the appearance of sexual reproduction. As such, the most reliable proxy for the first appearance of sex will be the first stratigraphic occurrence of complex multicellularity. Bangiomorpha pubescens is the first occurrence of complex multicellularity in the fossil record. A differentiated basal holdfast structure allowed for positive substrate attachment and thus the selective advantages of vertical orientation; i.e., an early example of ecological tiering. More generally, eukaryotic multicellularity is the innovation that established organismal morphology as a significant factor in the evolutionary process. As complex eukaryotes modified, and created entirely novel, environments, their inherent capacity for reciprocal morphological adaptation, gave rise to the ‘‘biological environment’’ of directional evolution and ‘‘progress.’’ The evolution of sex, as a proximal cause of complex multicellularity, may thus account for the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Nicholas J. Butterfield. Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom. E-mail: [email protected] Accepted: 7 February 2000
منابع مشابه
Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes
Agić, H. 2015. Palaeobiology and diversification of Proterozoic-Cambrian photosynthetic eukaryotes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1308. 47 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9389-9. One of the most important events in the history of life is the evolution of the complex, eukaryotic cell. The eukaryote...
متن کاملMicropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution
—Well-preserved microfossils occur in abundance through more than 1000m of lower Mesoproterozoic siliciclastic rocks composing the Roper Group, Northern Territory, Australia. The Roper assemblage includes 34 taxa, five interpreted unambiguously as eukaryotes, nine as possible eukaryotes (including Blastanosphaira kokkoda new genus and new species, a budding spheromorph with thin chagrinate wall...
متن کاملThe Fossil Record of Early Eukaryotic Diversification
The Cambrian explosion can be thought of as the culmination of a diversification of eukaryotes that had begun several hundred million years before. Eukaryotes – one of the three domains of life — originated by late Archean time, and probably underwent a long period of stem group evolution during the Paleoproterozoic Era. A suite of taxonomically resolved body fossils and biomarkers, together wi...
متن کاملA molecular timeline for the origin of photosynthetic eukaryotes.
The appearance of photosynthetic eukaryotes (algae and plants) dramatically altered the Earth's ecosystem, making possible all vertebrate life on land, including humans. Dating algal origin is, however, frustrated by a meager fossil record. We generated a plastid multi-gene phylogeny with Bayesian inference and then used maximum likelihood molecular clock methods to estimate algal divergence ti...
متن کاملEvolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000